Exponential Integrators for Second-Order in Time Partial Differential Equations
نویسندگان
چکیده
Abstract Two types of second-order in time partial differential equations, namely semilinear wave equations and beam are considered. To solve these with exponential integrators, we present an approach to compute efficiently the action matrix as well those related functions. Various numerical simulations presented that illustrate this approach.
منابع مشابه
Solving high-order partial differential equations in unbounded domains by means of double exponential second kind Chebyshev approximation
In this paper, a collocation method for solving high-order linear partial differential equations (PDEs) with variable coefficients under more general form of conditions is presented. This method is based on the approximation of the truncated double exponential second kind Chebyshev (ESC) series. The definition of the partial derivative is presented and derived as new operational matrices of der...
متن کاملError analysis of exponential integrators for oscillatory second-order differential equations
In this paper we analyse a family of exponential integrators for secondorder differential equations in which high-frequency oscillations in the solution are generated by a linear part. Conditions are given which guarantee that the integrators allow second-order error bounds independent of the product of the step size with the frequencies. Our convergence analysis generalises known results on th...
متن کاملInitial value problems for second order hybrid fuzzy differential equations
Usage of fuzzy differential equations (FDEs) is a natural way to model dynamical systems under possibilistic uncertainty. We consider second order hybrid fuzzy differentia
متن کاملAdiabatic Integrators for Highly Oscillatory Second-order Linear Differential Equations with Time-varying Eigendecomposition
Numerical integrators for second-order differential equations with time-dependent high frequencies are proposed and analysed. We derive two such methods, called the adiabatic midpoint rule and the adiabatic Magnus method. The integrators are based on a transformation of the problem to adiabatic variables and an expansion technique for the oscillatory integrals. They can be used with far larger ...
متن کاملUniformly Accurate Multiscale Time Integrators for Highly Oscillatory Second Order Differential Equations
In this paper, two multiscale time integrators (MTIs), motivated from two types of multiscale decomposition by either frequency or frequency and amplitude, are proposed and analyzed for solving highly oscillatory second order differential equations with a dimensionless parameter 0< ε≤ 1. In fact, the solution to this equation propagates waves with wavelength atO(ε2)when 0<ε≪1, which brings sign...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Scientific Computing
سال: 2022
ISSN: ['1573-7691', '0885-7474']
DOI: https://doi.org/10.1007/s10915-022-02018-z